4. Introduction antennas

4.1 Power Density, Povnting vector

4.1.1 Power Density

The power radiated per unit area is P=EAH. Let‘’s call P,.(0,p) the
power-density in a direction as the power per unit space-angle,
then is the totally radiated power

W, = [Pa(0,4)dQ with dQ = sinBd8dp  (4.1)

X

Fig.4-1: Coordinates.

The average radiated power density per unit space-angle
becomes

W
PQav:'(l_; (4.2)

4.1.2 Poynting vector

The antenna-radiation-diagram is the antenna-power-diagram which
indicates the power density flowing through a sphere with radius
r. This variation can be shown in the form of a polar plot in
which the radial vector has the magnitude of P,, power density
antenna, for a fixed distance from the source and the direction is
that of the point at which P, is measured.

To avoid specifying any particular distance it is usual to display
P./P., P, being the maximum radiated power density in any direction.
Such a polar plot 1is reffered to as radiation pattern of the
antenna. The locus of P,/P, describes a surface, an example is
shown in fig.4-2(a) for the short electric dipole. Several varia-
tions are useful.
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For example, the radiation pattern of the short dipole is symme-
trical about the axis, so it is only necessary to show the single
plot of fig.4-2(b). The radiation of such an antenna may also be
displayed in Cartesian form as in fig.4-2(c).

(a)

®)

-2 =] I 2 3 4 5
1 ! 1 L 1

I
Angle off axis in plane of symmetry
(degrees)

s ATaY,

—40L

Fig.4-2: Radiation pattern of a short dipole.(a) Three-dimensional
plot.(b) Section.(c) relative radiation pattern for a high-gain
antenna.
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This diagram corresponds with the average Poynting-vector

(P)=(EANH) (4.3)

or in sinusoidal terms

He
Fig.4-3: Poynting-vector.

4.2 Impedance, Directivity, gain, effective surface and height
antenna factor

4.2.1 Impedance

The equivalent circuit of an antenna and transmitter/receiver is
given below
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Fig.4-4: Equivalent circuit.

With Z,=R +R,+jX, and R,= loss resistance

Z2e=Z,+2q R,= radiation resistance
Z,=R;+3X, X,= antenna reactance
The (matching) condition for maximum energy-transfer is
Z2,=7."

When the above system works as receiver-antenna we have V=0
+ power delivered at the receiver
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1%
W, = T%. R, = (TEL[)Z'RT (4.5)
t

. power re-radiated by receiver-antenna

o
W, =I*R, = (—=2)2%2.R, (4.6)
r m #

- power dissipated in ohmic (Joule) losses of the antenna

. 1%
W, = I2.R, = (l_ZAT)Z'RL (4.7)
&

When the system works as transmitter—-antenna, we have V,=0
- power radiated by antenna

VT
[Z]

W, =I*.R, = (

. )2.R, (4.8)

- power dissipated in ohmic¢ (Joule) losses of the antenna

W, = I®*.R, = (W)Z.RL (4.9)

In practice the antenna is matched only in a small frequency-
range, a range for which VSWR<2.

4.2.2 Directivity and Gain

We define the directivity-function as

_ Pg(er‘b) _ 4nPQ(eI¢)
d(61¢) - PQaV - W[ (4-10)

The maximum directivity is

= 41 P
D = Qmax _ Qmax (4 . 11)
PQav Wr

We didn’t take injpconsideration the losses of the antenna, so now
we define the gain-function and the effective gain. The gain-
function is the variation of the radiated power (transmitter-power
W,=W.+W.) with respect to the angles 6 and 7.
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P, (8, )

g(6,9) =4n (4.12)
WT
and the gain becomes
41 P
G = —__Qmax (4.13)
WT
The efficiency of an antenna becomes
W G
= =X =2 4.14
n W, D ( )

with 50% < nn < 75%.

We can determine the gain of an antenna in any direction by measu-
ring the power density in the far field in that direction for a
given total transmitted power density. The power density can be
determined using a standard receiving antenna with known gain,
such as the simple half-wave dipole.

4.2.3 Effective surface

received max power (matched) _ Wi max (4.15)

power-density incident wave P

Aeff =

If a matched antenna is used, we have R, +R +3jX,=R,~JjX.,, S0 consi-
dering

Va

W, = ' 2R
Vi.R Vi
L = T et (Rp=R_., no losses)
4 (RL+Rr) 2 4R,
. Vi
L'hlS means that Aeff = —4—'R—§ (4 . 16)
sl s
One can proove for all antennas:
A2.G
A = T (4.17)

is the effective receiving area of an antenna.
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Now we can examine a one-direction radio transmission formule.

PG A, [4nr?

\
o P.G |4nr?

Fig.4-5: A transmitter-receiver system,

Consider a transmitter with gain G,, transmitting a total power W,
watts, as shown in fig.4-5. Then the power density P, at distance
r from the antenna, is

W..G
B =2 jHj

Amr? m?
A receiving antenna of effective area A, and power gain G, at this
point, directed towards the transmitter, produces an available
power P;.A.. given by
Gr- Wp-Aogr

Amr?

R

Taking in consideration the losses of the medium L,, and with some
losses caused by polarisation-rotation L,, we receive the following

power

W &2 6 O L Ly
(4xr)

with G, and G, the transmitter and receiver gains.
Suppose that the transmitter is located on place 1 and the recei-
ver on place 2, we get

Wy Aeff2.L,.L,.G,

4nwr?
Wp.Admr?

W+ Lge L,

W, =

Gy =

Changing the position of receiver and transmitter, we get
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W, dmr?
G,.A, = ———
Wp.Lpy. L,
So when medium and antennae are reciprocal we have for all anten-
na-types
& .5
Al AZ

It follows that the ratio of power gain to receiving area is the
same for any antenna.

4.2.4 Effective antenna height

The induced voltage V, as a result of incident waves with field
strength E is V,=E.h. The corresponding power density is

E2
Z

P = with Z, =, — ==120.%t (4.18)

o o

Z, 1s the impedance of free space. Further we have

& _ WR,ma_x _ V‘i _ EZbZ _ Ezhzzo _ hZZO (4.19)
eft j2 4R,P  4R.P 4R, E? 4R

ba

The corresponding ‘h’ 1is called the effective height antenna
factor h.ce.

4.3 Effective isotropic radiated power

The radiation pattern defined in the previous chapter

describes the directional properties of the radiated field. The
absolute magnitude is described by comparing the actual field with
the field produced at a similar point by a standard reference
antenna transmitting the same total power. The reference antenna
is usually taken as the fictional isotropic radiator, for which
the input power 1is radiated uniformly in all directions. For the
isotropic antenna we have

Py (8,d) = r2|E/\ }}] = C¢  (4.20)
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and power density

P, = == (z,~1207%)

4.4 Polarisation

This 1s the geometrical orientation of the top of the time-depen-
dent electrical field-vector E. In practice the polarisation of

the radiated energy changes with respect to place, so many parts.
of the radition-pattern can have a different polarisation. We can
discern linear, circular and elliptical polarisation.

— . — ——— — — — —— -

E Q=

— e e e o - — a—

P e e Wy —— . —— —
> > wmp = —  —— p— —

Fig.4-6: Some examples.

Linear E-(far) field
Horizontal and vertical
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ITTX . ANTENNAS

1. Impedance matching networks

If an aerial feeder 1is used to deliver power to the aerial
with minimum loss, it is necessary for the load to behave as a
pure resistance equal 1in value with the characteristic impe-
dance of the line. Under these conditions no enerqgy is reflec-
ted from the point where the feeder is joined to the aerial,
and in consequence no standing waves appear on the line. When
the correct terminating resistance is connected to any feeder,
the voltage and current distribution along the line will be
uniform.

1.1 Baluns (balanced - unbalanced)

- =

D

Fig.l-1: Unbalanced (assym.) output -- balanced (sym.) input.

In most cases an aerial requires a balanced feed with respect
to ground, and therefore it is necessary to use a device which
converts the unbalanced output of a coaxial cable to a balan-
ced output as required by the aerial. This device also pre-
vents the wave which has been contained within the cable from
tending to ’spill over’ the extreme end and travel back over
the surface of the cable. Whenever this occurs there are two
important undesired effects; firstly, the re-radiated wave
modifies the polar diagram of the attached aerial, and second-
ly the outer surface of the cable is found to have a radio
frequency voltage on it.

To prevent this, a balance to unbalance transformer is connec-
ted between the feeder cable and the aerial. The simplest
balun consists of a short circuited quarter-wave section of
transmission line attached to the outer braiding of the cable
as shown in fig.4-2.

ﬁ;é.ém_ e
e ] et ( BALANCED
J]L A) QUTPUT
( 0

"N_SHORT- CIRCUITED
QUARTER-WAVE SECTION

Fig.1-2: Quarter-wave open balun or Pawsey stub.

At the point A the quarter-wave section presents a very high
impedance which prevents the wave from travelling over the
surface. The performance of this device is, of course, depen-
dent upon frequency, and its bandwidth may have to be conside-
red in the design. Several modifications of the simple balun
are possible.
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For example, the single quarter-wave element may be replaced
by a quarter-wave coaxial sleeve, thus reducing radiation
loss, see fig.1-3. '

To prevent the ingress of water and to improve the mechanical
arrangement, the centre conductor may itself be connected to a
short-circuited quarter-wave line acting as a ’metallic insu-
lator’ as shown in fig.1l-4.

h_._ﬂk____
CCaXIAL | 4 _—1 BSKG%EJS_FD
NPUT %
=7
Fig.1-3: Coaxial sleeve balun.
A A d A
I a i 7
e
% ‘.!
£ —<
COAXIAL ’
OuTPUT Z l—{
BALANCED
QUTPUT

Fig.1-4: Tbtally enclosed coaxial balun. The right-hand secti-
on acts as a metal insulator.

A useful variation is that shown in fig.1-5 which gives a 4:1
step-up of impedance. The half-wave loop is usually made from
flexible coaxial cable, and allowance must therefore be made
for the velocity factor of the cable when calculating a half-
wavelength. It may be inconvient at frequencies above about
2000MHz to mount the coaxial sleeve balun close to a dipole

radiator.
; Tamffﬁo
I —

T o

N

N

\\\\~ . — /

7., COAXIAL
° OuTPUT

Fig.1-5: A coaxial balun giving a 4:1 impedance step-up. The
length L should be A/2 according with the velocity factor of
the cable. The outer braiding may be joined at the indicated
points.

We can also use a HF-transformer to convert asymmetrical coax
to symmetrical feeders.

L=

Fig.l-6: High-frequency transformer as balun.
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The use of broadband ferrites permittes us to make a broad-
band-balun.

oar \L‘mx

A‘K“W.,h_,,:._ﬁ\

AnorSn Okt

Fig.1-7: balun with ferrite-ring.

The ring is pushed on the end of the coax-cable. Return-
currents which want to flow on the outside (shield) of the
coax are prevented by the ferrite to flow back because they
see a high-impedance. The ferrite (high permeabillity desira-
ble) acts as an inductance (impedance). When the permeabillity
is high for a large range of frequencies, we can construct
broad-band-baluns.

1.2 Narrowband matching networks

The term matching is used to describe the procedure of suit-
ably modifying the effective load impedance to make it behave
as a resistance and to ensure that this resistance has a value
equal to the characteristic impedance of the feeder used. To
make a complete load (ie a load posessing both resistance and
reactance) behave as a resistance, it is necessary to introdu-
ce across the load a reactance of equal value and opposite
sign to that of the load, so that the reactance is effectively
'tuned out’. A very convenient device which can theoretically
give reactance values from the minus infinity to plus infini-
ty, (ie pure capacitance to pure inductance) is a section of
transmission line either of 1length variable between zero and
one half-wavelength with an open-circuited end or alternati-
vely of length somewhat larger than one half-wavelength with
an adjustable short-circuit capable of being adjusted over a
full half-wavelength.

1.2.1 Stub tuners

- example: matching with 1 stub
£

-
505 %/\0@51

&

N

Fig.1-8: Possible circuit to match.

With a parallel stub we can only change the reactance part
of an admittance.



With a matched circuit the (normalised) impedance and also
the (normalised) admittance must be 1!
So on the position where the stub will be placed, the real
part of the admittance must be 1! As said a parallel stub
only changes the reactance part. We can calculate the dif-
ferent parameters or use a Smith-chart.

calculation: suppose Y’, = real
at the position 1, measured from load in the
direction of the source, where the stub will be
placed, is valid

Y, +jtgkl .
/ et = R / = 1
Y' (1) T+77, tgkl with RelY’(1)] (must be) 1!

= Y, (1+tg?kl) = 1+Y2tg2kl = 1 =i—&—Bgtg =
2m Y,

Now the stub must compensate the reactance part of Y’,.
One can prove that

i

/7

we can prove Im[Y'(1)] = +(1-Y,).

We can calculate this again for complex loads (as antenna-
impedances are in reality) but the formules will get more
complex. To avoid this one can use the Smith-chart!

For the example above we find with the calculations:
¥Y’,=0.5; 1=0.1520A; Im[Y’(1l)]=+-0.707; '=0.152A;

Smith-chart: Y’(x) is on the circle | Kl =%. The stub must be
placed where Re[Y’(x)]=1, so we move us along the K-circle
until Re’=1 (direction of source). We find X’=0.707.

See fig.1-9. :

Linking the origin (of the chart) with this point gives,
seen from Y’,, a rotation over an electrical length of
0.152A. We compensate with a stub with ¥’_,.,=-0.707, corres
ponding with a length 1/=0.152A.

This is one possibility! We could also use X’=-0.707 on
1=0.35A, and stub Y’_,,=+0.707 with 1’/=0.35A.
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Smith-chart use for 1 stub.
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example: matching with 2 stubs

Kol J'\/' N Aoo L

ESVF R A
Fig.1-10: Matching with 2 stubs.

The two stubs are always placed on a distance 31/8 from each
other. One stub is always placed on the load, or on a dis
tance of some half-wavelengths from it (for ex. i). At point
2 Y’,=1; so with stub 2 we can (only) change the reactive
part. Stub 1 must realize a certain admittance giving real
part =1 over a distance 31/8 in the direction of the source.
See fig.1-11. 3A/8 is a rotation over 270°, so rotate the
circle Re=1 over 270° to the load and take the intersections
with Re=0.5. In our example there are 2 possibilities

Y,8 = Yy+¥gpup, =0.5-70.14, 50 Yoy, =-70.14
Y,b = Y +Yg1,,70.5-71.9, SO Ygpup;,=-71.2

Transformation over 34/8 to the generator gives

You = 1-J0.7, 56 Yy, =+70.7

Yor = 1+J2.9, 80 Y, ==72:9

The 2 (possible) solutions are:

1) stub(l) with length L=0.228% (Y’,,=0.5-3j0.14), at (2)
we get Y’,,=1-j0.7; This admittance gets real by
adding a stub of Jj0.7 at point (2) with length
0.347A.

2) stub(l) with length L=0.078A (¥’,,=0.5-J1.9), at (2)

we get Y’,,=1+j2.9; Becomes real at (2) by adding a
stub -j2.9 with length 0.0534.
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IMPEDANCE OR ADMITTANCE COORDINATES
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Fig.1-11: Smith-chart use for 2 stubs.
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1.2.2 Matching with localized components

When one works™ in the HF-band (2-30 MHz) we can use discrete
components for the ATU (automatic tuning unit), because stub-
lengths would become to large.

example: matching network with discrete components.

— Y
z,
SofL 2, L) = 1000

[

Fig.1-12: matching network with discreet components.

Normalise to 500, so Z’/,+(2Z’,lz7.)=1.
2, and Z, are pure reactances, to match Re{z’,lz’, }=1.
the imaginary component of (2‘,12’,) is reduced to 0

with z7,.
Again there are 2 solutions (see fig.1-15):

1) C’,=0.5/0; 9’.=1/0

Fig.1-13: first possible network.
2) 9'.=2/w; C'b=1/0
| ,
{ -
J I
C% ‘fé Aoo

B

Fig.1-14: second possible network.
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2. Isotropic antennas

2.1 Radiation pattern — power density

An isotropic antenna is a fictive (non realisable) antenna
with an isotrope radiation-diagram, giving a constant power
flux on a sphere witk dius r.

Fig.1-1: Radiation-diagram of an isotropic antenna.

For such an antenna is valid

Py(8,9) = +r2|EA H| = cst (2.1)

The power density becomes

W, 2
r_ - £z =120m)

P o=
* Amr? L

The directivity
P,
max _1

D = =
P

av

2.2 Electric field - Effective surface

The electric field 1is

B W . ¢30.W}
E_‘/PI.ZO—\J—E—I-Z_'ZO——I_ (2,.2)
Further the fictive antenna has no losses so:
_ G ; =
n = = = 1 with G=D=1

The effective surface becomes

el 4T 4w

The importancy of this antenna is that all other antennas are
definied (referred) with respect to the isotropic radiator.

91



3. Wire antennas

3.1 Hertz—-dipole, short dipole, long dipole

3.1.1 Hertz-dipole

The radiated power and the field distributions from an antenna
can be computed of a current distribution, assumed over the
surface of the antenna. The simplest example is that of an
ideal short 1linear element with current considered uniform
over its length. More complex antennas can be considered to be
composed with a large number of such small antennas.

The radiation pattern can be determined as a sum of individual
fields.

The current element is in the z direction with its location
the origin of a set of spherical coordinates (fig.3-4). Its
length is L, with L very small (L<A/60) compared with wave-
length. By continuity, equal and opposite time-varying charges
must exist on the two ends *L/2, so the elemnt is frequently
called a Hertzian dipole.

N

r-
&L+
—~PiT

I
ir

[

oA

Fig.3-4: Hertzian dipole.

One way of finding fields once current is given requires only
the rertaded potential (-vector) A. For any point Q at radius
r, A becomes

~ L J(r/, e).eIRE-IH
an = f £ =i .dv (34)
withpH=VAA and VAH = jweE (3_2)

The current I=e,.I,.e’* is supposed to be uniform over L. When
I is constant we have

_ = , _ kI, -7B,
A(r) = A,.e, with A, = Zn—r.e .L (3'3)

z
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Or, in the system of spherical ccordinates

: A ;
A_=A,.cosl = anf.efﬁf.Lcose (3.4)
o il ;
Ay = —A,.sinb _ P Tn o9br rsing (3.5)
dnr

By application of
H=2(VAa)
B

we have
I Lsin®
B St 14 1

AT jBr)

HI=O,H6=O,H¢:je‘jBI

and with the Maxwell-equations

E-_X (VA®

jwe
we find
E§=:i£25§§925cose(l+-jEI) (3.()
Ee:%ImLZOSinB (1+ jér +(jglz')a) (3.3)

a) In the vincinity of the antenna (r<A/6), the near field 1is
valid:

-jBr .
Hf:ej ;%Lflne (3.9)
nr

e~IRr1 1.7 cosB
jorr3p

E =

I

_jeIbprI,LZ,sind

E,
o anr(FBr)?
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b) Far from the antenna (r>A/6), the far field is valid
(3.9)

Hz:je‘ﬂIBILsine
Amr

E,=0 (2.10)

_JjeP*BILZ sinbd
- Amr

Ey

Because the far field is very important for telecommunication
purposes, we’ll consider this further in this course.

The power-density is

= = 272020 2
P=—£(E/\H)=ImLBSlneZO.§; (5.40)
2 (4mr)?

=K.sin%6é&, (2.11)

From this formula we can derive the (relative) radiation

pattern for K=1

Fig.3-9: Relative radiation-pattern.

This is an omnidirectional pattern with beam-width 6,,=90°.

The total power becomes

Z BRIiLA .
W}=fP.dS=—J£%E§L—- with ﬁ=£%5 (3.44)

L
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The radiation-resistor is

WT ~ Ly,
RI=I 7 =800 (=)

av

The directivity becomes

P 3
D=_Tax .. 2
P 2

av

The effective height h_..=L, while
the effective surface is

Borr™g

3.1.2 The short dipole

The length of this dipole L®=1/30 so the current is considered
to be a linear function

“ 1
@) Y

Fig.3-%: The short dipole - current distribution.

2 L
for z>0: T ==7 (=Z-2>
z (z) L“’(Z )

2 L
for z<0: T ==71 (=+z
z (z) L”’(z )

retarded potential A and the field (E,H) on a large distance
become also the half, so
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s .
_Jer gjfs%ne | (3 42)

Hy

_jePIBI 1.7 sinb

B 8nr

And Poyntings theorem states:

—, — . T2L?sin%0B3%z
p=2 (g A gn=1= P*Z,
2 128n2r?

The total radiated power becomes

wT=fsp. ds=fo"p. 2nr2sinfdo

thus

W, = 10n21,,2,(—}{i)2
The radiation-resistor, determined from W,=I,,°.R,, is

2W. 2
ZT:ZDKZ-é
12 A

x 7

R:

r

The radiation-diagram has the same pattern as the Hertz-
dipole, so D and A_,, are the same

3 32
D:E Aers= 8w

The effective height L_..=L/2

7 /_IQH(LH@JQJ

B

[}

Fig.3-l: Effective height.
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3.1.3 Long dipole

The current-distribution is now sinusoidal and can be conside-
red as a superposition of a numbrous of elements of constant
current. Consider the current-element I.dz then the electrical
far field becomes

_.Br/ . e
e T(z)e7Psin0jpz, (3.43)

anr’

Fig.3-K: The long dipole.
with
for z>0 I(z) =Imsin(B(—§-—z))

for z<0 I(z)=I,sin(p <§+z> )
Approximations for the far field
r'=r-zcos® ; 0=0 ; ﬁ£%|z|££l
T I

The total electrical field can be written as

, L - L
=_jZQIme‘mr cos (B 2cosB) cosp > (5;1#)

2nr ) sin6

A J

Ey

with F(0) the radiation-pattern.

The Poynting-vector results in

il ‘E%P
Z

o

P,=

N
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The total radiated power becomes

WT=fSp. ds:fo"Prznrzsinede

While the radiation resistor is

2W,
B=—21

2

Ia
Further

P A2D A =
De— B, a ; Bope=2F(0) 2

Wy/4mzr? *If4g ozt 7 F(0)

Special cases:
length L=odd(i/2):

Because

_JZ,I,e 7k

2T F(®)

Ey

ig L
cos(ﬁzicose) cosBiE

F(0) =

sinb
and with
L=22"13 na1.3, ..
2
cos(2n—lncose)
= F(8) = .
sinb

The last expression determines the radiation-pattern. We
can find the zero’s with

2n-1 an—n) 2k-1
2

or cosf=+
2n-1

ncosf=x (

and the maximum of F(O) with

B—écosﬁ=¢kn or cosf=+—_2K
2 2n-1
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a) A/2-dipole n=1

F(0)=0 if cosB=+-1; F(O) is max 1f cosb6=0;
We get

E::j5015eiﬂr( cos(n/ZcosG))z
0 ¥ sind

and

1 2
P2l
©;

W.=36 .61,
R_=73,3Q

D=1.64; A_=0.131A%; h,.=0.3191;

n, ©
45&6 z 540

Mo
Fig.3-6é: Radiation-pattern for n=1.

b) 3A/2 dipole n=2

zero’s: cosO=+-(2k-1)/3
max. F(8): cosB=+-(2k)/3

_L\%,Z /\"5@ '\_,\JX:J
S
—‘:ED‘S \\ / —w‘
_30‘: ~ gco
{AteFe,s) o (Me-to5)
- (15 43,3) 1% + (A30-4%,3)

Fig.z#: Radiation-pattern n=2.
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3.2 Loop—antenna

Fig.3-8: Loop-antenna.

To make the calculations easier we consider the loop built up
as a rectangular structure, as shown in fig.3-2.

Fig.3-9: Rectangular loop-antenna.
In the x-y-section (6=90°) the fields of 3 and 4 will compen-

sate each other, while 1 and 2 give the resulting field. In
the far field this becomes (for 1,2)
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je P B1 rsind

Hy= =

b inr (3.45}
je P B 1.Z_sind

Eg=

dnr

We consider the x-y-section, conductors 1 and 2, together with
the point P in the far field.

P
]

Fig.3-4f x-y-section of rectangular loop-antenna.

Resulting in a phase-shift U,

- 2n.distance _ 2mdcosy

¥ 3 A

Further the currents in 1 and 2 are opposite (y,=180°), so we
can write the resulting field as

Es=E [1+e7 W% ] o

,ER’:%SJLH(
dnr

ndCosw)
A

and with (wd)/A very small this becomes

IERI:1201‘de’1c2cos¢:K_.COSqf (3.46)

AT

The power is

i fERIZ
2 Z

P=

/
=K?cos?y

o

The radiation-pattern for the X-y-section 1is shown in the
figure on the next page.
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Yot ‘ . ‘\“D

Y2
35+

Fig.3-73; Radiation-pattern x-y-section loop-antenna.

When we make the same analyses above for the x-z-section and
with conductors 3,4 we get the total radiation—-pattern

Fig.3-4% Radiation-pattern loop-antenna.
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3.4 Static arrays

To increase the directivity, thus more radiation, power or
energy in a specified direction, we place several antennas or
elements near each other to become a constructive inter-
ference.

Consider a linear array

An_4

Fig.3-3]: linear array of antennas.

with n radiators A, on a distance L from each other. The (far)
field from one element is (see previous chapter)

_ jeIPTBI1drsinbz,

i (3.23)
d&f:jefﬂfBIdLsinG
dmtr

The wave, coming from A,, must travel Lcosy less than A,.
A, has a positive phase-shift &= 27/1.Lcosy with respect to A,
A, 2¢ to A,, ... For n radiators we have

dECOC=dEB [l+ej5+ezji+. . +e (n—l)jE]

When the n radiators have proper electrical phase shifts (via
the feeders) 6;, and if each radiator is fed with an individual
magnitude with respect to the first radiator then

dEtot:dEe [l +Alej(i+al) b +An_1ej(n—l) E+j9n_1]

~dsy. F. =dBy|s|e? (3.24)

S=[F]='space-factor’. The radiation density becomes

p.=S8%.pP, with S?=F.F*

o

For 2 radiation-elements S?=1+2Acos(&+80)+A2.
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3.4.1 End-fire couplet

2 Identical radiators are placed on a distance A/4. We feed
the structure with a phase-shift of 90°. This means

Ay =4 ; E:j%léscosw; 8:-%;
43

§ ) —» X
/&a ’) o ~Aa(-4)

Fig.3-3]: 2 Identical radiators on a distance A/4.

A,: the fields are in phase (-7/2 + 27/A . A/4)=0
A,: the fields are in opposite 180°
Mathematical this becomes

-7 L [1-cosy]
F=l+e ™ 2

SZ=F.F"=4cosz[i§n(1—cos¢)] (3.24)

This results in a cardiod-graph in the xXy-section

Fig.3-33: cardiode-graph in the xy-section.

The antenna—qain G=6dB
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3.4.2 Broadside couplet

Consider the same as above but distance between antennas equal
to A/2 and the elements are fed in phase.

Fig.334: 2 Elements fed in phase on a distance /2.

Thus
A,=A,; 0=0; g:%’ilcosw;
. 2T
. (3.25)
1
S+2cos(—1—cos¢)

with
l=j£, S:ZCos(lzcosw)
2 2
y=0: S=0 - radiation in z-direction=0
¥=90°: S=2 - radiation doubles w.r.t. one dipole in y-direction

The power in y-direction increases with 4

>

Fig.335: Broadside couplet.



3.4.3 Uniform broadside array

Consider the expression for F, using identical structures

F:l+ej£+_ L. +ezj(n‘l)E

One can write this as

_1-g7%¢
C1-e7t
siné;E
5:’__7__E_w with £=BLcosy (3.96)
SlnE

When we extend the structure of 3.4.2 to an array, with length
W and element-distance L, we obtain

Yy

. 3
Flg?. array of elements.

Suppose 6,=0, then 1is the radiated power maximum for y=90°
(perpendicular to connection-line).

nnL

sin—g—é sin( cosy
it | = o (3.27)
sirpz sin(—jfcosw)

The pattern has main- and sidelobes, search the max and min
and one can find some angles to plot the pattern on the next

page.
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v

Fig3-3}: Uniform broadside array.
3.4.4 Uniform end-fire array

This is an extension of the end-fire couplet

x - ¢
S /’]/’ ‘ | - 7

T
L

Fig.3-38: Uniform end-fire array.
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o0
SlnEE(E—B)_

|
Do A ap
51n?§(6 0)

5|

0=PpL; E=PLcosy;

Resulting in

sinﬁnnL(l—cosﬁ) )
- 5=| | (3.28
sinl%é(l—cose)

The radiation density

P,=52pP, sin’a ()
After some maths

nnL

sin?[ (1-cosB) ]
P_=15m ( Ifx)z A (1-sin®Bcos?y) (3.29)
sinz[j%é(l—cose)]

For L=A/4 and a=90° we have

- ~
PI;K_SlF“Hﬁ/4(l c:osﬁ)_l
sin®n/4 (1-cosH)

This expression has a maximum for 6=0°. We get the following
pattern, for n=8 there are 7 lobes

Fig.3-39: Uniform end-fire couplet, n=8, xz-section.
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