I. Transmission lines and

(introduction) antennas

1. Transmission lines, sinusoidal waveforms

Transmission lines are used to transmit electric energy and signals
from one point to another. The basic transmission line connects a
source to a load. This may be a transmitter and a antenna, a shift
register and the memory in a digital computer, a hydro-

electric generating plant and a substation several hundred miles away,
a television antenna and a receiver, or one channel of a stereo
turntable and one input of the preamplifier,

In classic networktheory we assume that the physical dimensions of a
network are small enough with regard to the wavelength A, so no
standing wave patterns do appear. This isn't the case with long lines
or high frequencies! Between start- and endpoint of the line there is a
distance amount to some (or a part of a) wavelength(s). _

The line is now a network with distributed parameters and has a
characteristic impedance Z_.

The important fact is that forward and backward waves can be sustained.
The presence of backward as well as forward waves evidently affects
such things as transmitted power, distribution of electric field, and
losses in a transmission line. In transmission-line theory, techniques
are developed for conviently studying such effects, and the results are
applicable to any form of one-dimensional wave motion.

We start by investigating the appropiate description of a uniform line

in circuit terms.

Fig.1l-1: The geometry of the (a) coaxial, (b) two-wire, and (c) planar

transmission lines. Homogeneous dielectrics are assumed.



1.1 Voltage and current equations

Analogous with the propagation of a plane electromagnetic wave in a
homogeneous medium we can consider a length of uniform two-conductor
line connected between a source and a load. Within any short length we
can discern both energy Storage and energy dissipation: the latter
occurs both in the conductors and in the dielectric, and the former as
both magnetic and electrostatic energy. A circuit displaying these
properties 1is shown in fig.I1-2. The parameters <,C,r,g will be
measured per unit length &x.
The stored energies are %¥i?.8x, ¥Cv?.5x, and the energy dissipation
(ri* + gv?) .5z, which are compatible with ideas of energy distributed
along the line.
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Fig.1-2: Circuit equivalent to elementary length of transmission line.

With Ohm's law, and series-impedance z=r+jwd
shunt-admittance y=g+jwC, we have

V(x+dx) -v(x) = ~z.1i(x)8x (1.1)

1(x)-1(x+8x) +ty.v(x)dx (1.2)
Now we get two partial differential-equations:

Sv _ -z.1 (1.3) o ~Y. W (1.4)
DX

5x

Deriving with respect to x gives:

2. i
5V=_ZE:+zy.v=Y2.V (1.5)
He Ox
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o%1 :—yﬂ:+zy.i=vz-i (1.6)
S5x? Ox



We can write the solution of those 2™ order diff.eq. as
Ae™ + Bg™" (1.7)

= AZeYX + Bze'Yx (1.8)

With propagation constant

Y = +/zy = a+jB

(1.7) or (1.8)

(1.9)
By substitution in

we get the solutions
{eO(XI ejBX, e—O(X e—jBX} (l.lO)
Interpretation of those terms:

® c* = magnitudefactor, which indicates that the magnitude

takes off from higher to lower x values ( so in -x
direction) .

® cif* = or a sinusoidal waveform with respect to {x,t}:
ej (Bxtwt) ;

representing a waveform travelling in -x
direction with speed w/B.

® ¥ = conform to e**

but +x direction.
® cJfx = conform to e*If*,

but +x direction.

Now we have to determine constants A,,A,,B; and B,.

Substituting (1.3) in (1.7) gives
.6_V. :YA er+(_Y)Ble_Yx = -z.1 =
Ox &

~Bs BB T —F, B (1.11)

Equalization of the exponents

A, =-|¥a  (1.12) B, = +| ¥
Z

So we can write the solution as

N

L (1.13)

vix) = A e¥" + B e "

(1.14)
i(x) =, lz’(—AleYX + B e %) (1.15)

Considering an infinite transmission line with a source at x=0, there
will only be a voltage

(current)
Now the eqg. (1.14) and

waveform in +x direction.
(1.15)

convert to



v(x) = Be¥*  (1.16) ifx) = LB e™ (1,17

Z
Ratio of (1.16) and (1.17) gives
z(x) = XX - 1z (1 g
1(x) y

The input impedance of an infinite long line is the characteristic
impedance! So Z_ = V (z/y) (1.19)

Z. is independent of x, and we may therefore interprete this equation
by saying that an impedance Z_. is presented to the line on the left of
X, equal to the right of x. We may in circuit terms consider the
possibility of providing a suitable component with impedance Z_. and
using it to terminate a line. The part of the line between source and
this load will then behave as though it were extending to infinity. The
significance of the characteristic impedance Z. 1s that it can replace
an infinite length of line. A line terminated in the characteristic
impedance is said to be matched.

We can suppose ® a lossy line
Now we have to take into consideration r, ¥, C,

neglecting g, so we get

y = J(r+jod) joC = a+7jp (1.20)
z. _Eiéﬁﬁi = ol+5p/ (1.21)
JjoC

with o: attenuation constant (nepers per metre)
B: propagation constant.

® 3 lossless line
so r=g=0.

Hence

Jwy<9C (1.22)

Y:
zc=,’% (1.23)
C




and because p,., ¢
- I
The same is valid for the wavelength A=v./f < A =C /f.

>1, the propagation speed in a cable is always

r =

Also valid for a lossless line

2nf _ 2m _ k (1.25)

v, A

vl = = =
Vf

1.2 Reflections, impedance and VSWR

Let's consider a lossless, finite transmission line terminated in Z

(load impedance) .

1.2.1 Reflection coefficient (K,p,T) C(L)
-—’(«(
Ze ar (L) L
@
— = 2C
0 L
Fig.1-3: Line terminated in Z,.
Whe consider a line terminated at x=L in an impedance Zigs
With M=k we can write (1.14) as
L) = 2,.i(L) = Ae*+B e Ik = 2L (_a gikip g-ik 1.26])
L) = Z,.1(L} = A e A= = 27( 1 € e ) (L.
This equation can be written as
A e?ik(1+Z2 ) = B, (Z,-1) A =B -2gxz Zo71 (1.27)
1€ IS R e g = #HE 7 -1 .

Z,+1

and call Z2';=Z,/Z. the normalised load impedance (to the characteristic
impedance) .

The term (Z2',-1)/(Z',+1) is defined as the reflection coefficient for
the voltage at the load, called K (or I',p).

For the current at the load the reflection coefficient is -K.

The term e™* is the phase factor, only depending of the length L.



1.2.2 Impedance

Take again (1.14) and (1.15) in which we substitute A, by (1.27), we
get
v(x) = B,.K.e 2I*el+p e 7 (1.28)
L (-B,.K.e¥eikrep e ) (1.29)
7
The ratio z (x)=v(x)/1i(x) 1s called the local impedance at the point X%,

resulting in

Ke—ijLejkx+e—jkx
Z(x) = 2 (1.30)

We can write the normalised local impedance as:

2lx) = ZHE) o LHELX) (1.31)
z, 1-K(x) '
with K(x) = Ke 27k27x (1.32)

K(x) is the voltage reflecting coefficient at the point x, between the
reflected (backward) wave A;e’™ and the forward wave B;e 7.
Substituting K by (z',~1)/(Z',+1) in (1.32) and after substitution of
(1.30) we can find for z" (x)

7, +jtgk (L-X)
l+jZL.tgk(L—x)

z! (%) (1.33)

"Filling in x=0, we can find the (normalised) input impedance of a

transmission line with load Z; at x=L

z +jtgklL

z'. =z/(o) = (1.34)

1o 1+jz, tgkL

With (1.34) we can examine some special cases:

e input impedance of a short line (L<<A)
Z.. = Zy

® input impedance if 2y = Z.
2", = Z./Z; = 1 (normalised)

SO Zi, = Z¢

in



® termination in an open-circuit

7', =
Z',, = —-J.cotg(kL) (1.35)
q The input impedance (admittance) 1s imaginar.
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Fig.1l-4: Input reactance for a length of line termin-

ated in an open-circuit or a short-circuit.

Notice the pattern 1is periodic with A/2 !
The voltage reflection coefficient K=1. So at the point
x=L the voltage doubles and the current will be O.
® Termination in a short-circuit
Y, = [
zZ';, = J.tg(kL) (1.36)
as shown in the previous figure.
The input impedance is again imaginery, voltage refl.
coeff. K=-1, so at the point x=L the current doubles
and the voltage will be 0.
® input impedance of a A/2 line
Z',, = 7', (1.37)
so the impedance measured at intervals of a half-wave
length from the termination has the same value as Z; !
It seems that the A/2 line has no effect on the config-
guration.
The same for L = A, 3A/2, 2A, 5A/2,
® input impedance of a A/4 line

Z
z. = — so Z. = (1.38)
VA



The line thus acts as an impedance inverter, we call it
the quarter-wave transformer. The same for L = 3A/4, 5)/4,

1.2.3 VSWR - Voltage Standing Wave Ratio

Thus the fraction of the incident voltage wave that is reflected by a
® line with a different characteristic impedance
® load impedance, different from characteristic impedance,

is K(x) = (z'(x)-1)/(z"(x)+1), derived from (1.31)

Let's examine K with regard to x, from

v(x) = A el** + B e Ikx (1.39)
. A, e
and K(x) = |K|e 23%t2=x) = 717 . (1.40)
Ble—jkx

(K(x) 1s a periodical function with amplitude IKl and period A/2)
we get '

v(x) = Ble 7" (1+K(x)) (1.41)

Now we can interpretev(x) as
® one wave propagating in +x direction
® but with variable magnitude IB;. (1+K(x))l.
The maximum amplitude along the line is B,. (1+lKl), the minimum is B,. (1-

k), with Ikl<1 for passive loads.It will in general be complex, hence
K = |K|e7® (1.42)

So, analysis of I1+K(x)l gives us the max and min amplitude at the line,
with a period A/2, for what concerns the absolute value.
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Fig.1-5: Standing-wave pattern.



Knowing the reflection coefficient, we may find the standing-wave ratio
as

Vmax 1+IK|

1.43
- x| A

Further, we notice that the power, available in every point of a

lossless line is defined as

(x) = ZRe(v(x).1*(x)) (1.44)

P
i Jkx -Jkx 1« * _ -jkx * _Jkx

=%Zi[uBluZ—uAln21 (1.45)

So the power reflection coefficient is

12,1 _
I8, 12

I1K]I* (1.46)

The relative power dissipated in the load can be written as

1-)&)? (1.47)

1.3 Voltage and current standing wave patterns
Examples with real and complex loads

Let's examine the wave pattern and the input impedance with some

examples
® example 1 : input impedance
———e
Z 0y, <c = 3
8 f —p O
® example 2 : termination in 2.Z., length L=XA
— AN —s &
RB ’
D I)J
- X

L= L
o 9



1fét)=J1+K(X)l=|l#%eiﬂ“LWw

= ﬂ:h%cosZk(L—x)1i%sin2k(L—x)]

- \J l+%c0522k (L-x) +%sin22k (L-x) +%c052k (L-x)

= -£9+u%cos2k(L—x)
S 3

minimum:
cos2k(L-x) = -1, so
(2n+1) A
X o = L=l od 4
min (2) 2

The corresponding minimum is 2/3.
maximum:

with maximum 4/3.

The max, 4/3, corresponds with E,
The min, 2/3, corresponds with E/2.
The voltage pattern becomes

Y o
}
, //" .
//" \\ ! C
== ~ =
| | |
| | i
L -2\ L'—BA/{/ L-X/g2 v L
. J .. g e e OO
o NG A/3 AN/ A

The current pattern is minimum when the voltage pattern is ma

X, and max
when the voltage pattern is min.

Hence for the current we can work with -K

10



® cxample 3 : termination in open/short circuit

Standing-wave pattern for open-circuit:

Standing-wave pattern for short-circuit:

1.4 Smith-chart

An important addition to our analytical and design tool will be the use
of a graphical technique for solving reflection and matching problems.
Probably the most widely used one is the Smith-chart.

Basically, this diagram shows curves of constant resistance and

constant reactance; these may represent either an input impedance or a
load impedance.

11



1.4 Smith-chart

An important addition to our analytical and design tool will be
the use of graphical technique for solving reflection and matching
problems. Probably the most widely used one is the Smith-chart.
Basically, this diagram shows curves of constant resistance and
constant reactance; these may represent either an input impedance
or a load impedance.

We already studied

KL = ZL_ZC
ZL+ZC
and
K(x) = K,e23k=0 with K, = |K.|e?® and |K <1 (1.48)

Fig.1-6: Polar coordinates of the Smith chart.

The diagram is constructed within a circle of unit radius, using
polar coordinates. Peculiarly enough, the reflection coefficient
itself will not be plotted on the final chart, for these additio-
nal contours would make the chart very difficult to read.

The impedances which we plot on the chart will be normalized

with respect to the characteristic impedance.

Considering
/ 1+K(x) . .
z/(x) = =——=L = normalised dance
(x) 1K) impe
= R'+7x’ (1.49)

11



K(x) is complex, represented by u+j.v, gives

_ l+u+jv

z/ (x) T and
R/: —EZ—-—X/: X/: _ﬁ_ (1_50)
(1-u) 2+v? (1-u)2+v?2

After several lines of elementary algebra, we may write (1.49) and
(1.50) in forms which readily display the nature of the curves on
u (K.) and v (K;) axes,

- R/ 2 2 = ___.l—
(u 1+R/) +v VI (1.51)
<u—1)2+(v-i/)2 =1 (1.52)
X X"

The first equation describes a family of circles, where each
circle is associated with a specific value of resistance r.

The second equation represents a family of circles defined by a
particular value of x. See fig.1-7.

Fig.1l-7: r and x circles on Smith chart.

It is now evident that if we are given 3Z., we may divide by Z. to
obtain Z’, locate the appropiate r and x circles, and determine K
by the intersection of the two circles. The angle of K is the
counterclockwise angle from the K, axis. A straight line from the
origin through the intersection may be extended to the perimeter
of the chart.

example : if Z,=25+j5002 on a 500-line, Z’=0,5+3j1, and point A on
fig.1-8 shows the intersection of the r=0.5 and x=1 circles. The
reflection coefficient is 0.62 at an angle of 83°.

12



The normalized input impedance pro-
duced by a normalized Joad impedance
z=05+j1 on a line 034 long is
z;, = 0.28 — j0.40.

0.135
Rt

Fig.1l-8: see example above.

The Smith chart is thus completed by the addition of a scale
showing a change of 0.5 for one circumnavigation of the unit
circle. For convience, two scales are usually given, one showing
an increase in distance for clockwise movement and the other an
increase for counterclockwise travel. Note that the one marked
"wavelength toward generator" (wtg) shows increasing values of 1/A
for clockwise travel, as described above. The zero point of the
wtg scale is rather arbitrarly located to the left. This corres-
ponds to input impedances having phase angles of 0° and R.<Z,. We
have also seen that voltage minima are always located here.

- example : )

+=180°

—150°




At the bottom of the chart we can find some extra scales. Let’s
illustrate them with the point z’=2. We can read on the scales on

the right "voltage reflection coefficient": |K =0.33, ‘'power
reflection coefficient": I Kl *=0.11, "return loss in dB": -10log
| Kl *>=9.544B,

At the left we can read the VSWR in voltage or dB and some extra
scales for lossy lines.

What about admittances? We know Z’ . =7, /7. and Y’ =2./2.=Y./Y., so

/ _ 1-K(x) _
Y = 150 - TR a3

With -K(x) we can read Y’(x) and we can find -K(x) by reflection
of K(x) with respect to the point (0,0). So by reflection of Z’(x)
with respect to (0,0) we get immediately Y’ (x).

The (practical) use of the Smith chart is shown in the following
w&ynﬁwﬁ

14



2. Transmission lines, pulse waveforms

We have been considering the transmission effects from the point of
view of signals restricted to narrow bands of frequency. Digital
signals consist of a sequence of pulses.

Now we're going to study the temporary transition-phenomena of
transmission lines when applied with impuls voltages (step-function,
Dirac, impuls waveforms, ...).

The same phenomena appear when we consider digital (logic) signals and

send them with high datarate over a long distance.

2.1 Voltage and current equations for complex charged lines

with an ideal step-function source (t,;..=0)

Consider an incremental length of a uniform transmission line.
— L) T AAML —> {(mctd=)

| ¢
V(%) g _JL C a v(x+dx)

o + c{‘JC

o o

—&
<

- X

Fig.2-1: Circuit equivalent to elementary length of transmission line.
v(x+dx) -v(x) = -ri(x+dx) dx—g?%dx (2.1)

i(x+dx) -1(x) = -gv(x) dx—C%dx (2.2)

Rewrite it as

OV - -ri-g8 (2.3
Ox ot
o1 dv
—— B == V—‘C— 2.4
Ox g ot ( )

When we suppose a lossless structure, then r=g=0:

: 2 2
v _ g8l ,p B _gclv (2.5)
Ox ot S5x? St2
. Z: 2.
O1 _ clV oy 871 _ 81 (2.6)
Ox ot 5x?2 St?2

The solution of these differential equations are can be written as

15



F(x-v,.t) and g(x+v,.t) with v,=——_  (2.7)

£ Nate

With f a forward wave (+x-direction) and g a backward wave

(-x-direction), so we can write

v =A .f(u)+B .g(w) (2.8)
i=A4,.f'(u)+B,.g'(w) (2.9)
with u = x-v,.t
and w = x+v,.t

When we use these solutions in the wave-equations we get

5fF 5g B! 5g’
A —+B —2 = -1(A -v,.) +B .V 2.10
1 8u L &w 2 du { £ ¢ Bw f) ( )
B Sg’ 5F 5g
A~ _*B = -c(A, =— (-v_.)+B, =2 .v 2:11
25u ¢ ow léu( # Low & ( )

After some algebra and integration (to u and w) we find
A g B =
f = fh_iw._+c and g=g/(-=-2),| =+C 2.12
AZ (C 1 g g Bl C o4 ( )

Because nor voltage nor current can't be zero alone (for each wave-
front), we have with C; and C, =0 that voltage and current pattern are
smilar, so

f=f" and g =g’ (2.13)
C B C
A, = Al,\ Ej and A Y g (2.14)

with ,y%-thecﬁmracteristicimpedance.

For a resistive load we can define a reflection coefficient as in the
previous chapter.
For an impuls the input 'impedance' of a transmission line is always

the characteristic impedance! So it's different from sinusoidal waves.

® cxample 1 : Line with switched input for surge calculation.

16



VBRON = A00 1)

—X
= 7 < ('K ! s ‘2 2 —2 -
V(t,] ,X,] ) = \ff + f\.vvf + I&VE\_VVf + I\._‘;_I\vvf + KX']' KVVf = 45 5
= X { T T \-'2 a 2 2
I(t/] ’X_/I ) = £ T L\.iIf + I\_]'_ICI_Lf + RiLlIf + I\_:'L KlIf — O,’]6‘7 A

shown in eéxample 2. The initial surge E is travelling from the input.
At the termination this surge is totally reflected and travels back
along the line to the input. Thus at Point 2z, the voltage will vary

17



with time as shown in the figure below. Since the reflected surge sees
a correct termination at the input of the line, there is no further
reflection, and the line remains charged to the voltage E.

Lattice diagrams can be used for more complicated problems on lossless
lines involving multiple reflections.

® cxample 2 : example 1 with lattice diagram

oo .

Zo
Zo

@) E’z

A e =

h) t<lic
z
E b—
(©0 ER - b= lle
/f_/zz,. 4;
7 i : ——7z
]
1
|
Eb —i
C——— | 2fc> t>'lc
(d) Ef2 {
L‘/E/ZZO :
0 1 L z
1
1
J E '
Er ,
¢ 1| 2 > b e
) ! ;
&) ER Ef2Z4 ; ‘
o] lni— 1 : z
]
1
1
1
I
£ i
) L E> 2ic
[}
0 i s

secircult with lattice diagram
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What about a non-resistive load, temporary-transient phenomena?

Consider fig.2-2, assuming the line is long and t=0 when the pulse

arrives at the load.

[::(t) Zc ' ‘1:‘]‘ % L

Fig.2-2: Line with inductive load.

We can always write

v = f+g

T |

i=-=.(f- 2.15)
e g) (

c

with f, the forward wave and g, the backward wave.

But, we need a 3., equation with regard to our load. Here it is
v=9.% (2,16
dt

First we search g and then add f, so we have the voltage at the load.

20



g of 9dg
f+g= —.(—-==)
777 '3t ot
g+§_@:—f+g,a__f
Z, ot Z, ot
so g&T-Q% =0 - gtDtg=20
with D =-=l (D-operator)

so g(t) becomes

indeed, the voltage first sees an open circuit (v doubles) and then

gets short (v=0).
The current at the load becomes

; 1
R e O
5 (L~}
[of

t
_ Z'U(t).(l—e =
Z

c

)

indeed, the current first sees an open circuit (i=0) and then gets

21




short (2u/Z.) .

- b

2.\1[6)
;Cc

Fig.2-3: Voltage and current at the load (t=0).

2.2 Voltage and current equaﬁions for complex charged lines

with a practical step-function source (t;;..~0)

U

Yin

|
|
|
|
|

oo

0 ‘:.‘tr-
Fig.2-4: Impuls with t,..#0. Possible circuit.
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We suppose that t,__#0, so we can associate a maximal frequency with
it. Say t,. is large enough (or ¢ small enough) so wd<<Z_
over the complete frequency spectrum.

The reflection coefficient at the inductance 9 ‘is

¥ = L c _ ijZ _ Vrefl

= = =9
ZL+ZC 2. Zc-’_j(*)g source 4
. Jud
2.2
So
g = £392 (1)
27
5 %’ c
AT -t

l c\Qﬁ
\l
N
< a0

&
AN
N

&

The waveform f (applied source) contains a finite number of fre-
quencies, and (1) contains the variable . Because

. d
wf= —f (2)
J dt

with f =V, el®" with V..= amplitude of f

for every frequency component must be

- pJo¥
g 22,
(2) in (1) gives g= 2L (Jod, 1 _ o 3&f

3t 2zZ_ jo 22, ot

Because the peak of the reflected wave g has to be proportional with
the maximum slope of the tiise We have

_ @ or,
T
V.
with (2L) o lin
5t £,
V.
sog- 9 Vi
27 ¢
c 2 2}

43



The amplitude of the reflected wave gets reduced because of the finite

trise .

Further the reflected impuls 1s spreaded out

ﬂuf

A

Vin - - ———— |

>
Figs2—5% Leee # 0
While an ideal step-function gives
\ V
VirL ————————— e
> C

nT

Eige2-6i Tus = ©

2.3 Non-linear loads - Bergeron method

So far the load was supposed to be linear. With the Bergeron method we
can also work with non-linear loads. To illustrate this we give the

following example

$~2 — ) ZcC ZL [j

&

Fig.2-7 : Transmission line with non-linear load.

We draw the load-line Z,;, de load-caracteristic Z; and the (straight)

line with slope Z..
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1 i" {77 iv é/ZB -

Fig.2-8 : v/i-plot with Bergeron method.

The (effective) voltage on the line is e'

The current i starts to flow

These co-ordinates are found on the point of intersection of the load-
line Z; and Zics

When the (forward) wave arrives at the load, there will be a
reflection, so at Z, there's a voltage e”, corresponding with a current

i"

2z,

. e
ZL+ZC ZL+ZC

Constructing a (straight) line with slope -Z. in the point e', then
gives the intersection between those line and the line of Z, the point

(e",i") N
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Indeed, the value e" in the plot is equal to

/!

alf = e’+Zc(i/—i”) with e/ = Zc.i/ and e” = By d
/
. 2a' 2e'Z
so i = and e’ = =
' ZL+ZC ZL+ZC

When the (reflected) wave arrives back at the source, we'll have
the voltage e"'. So drawing a (straight) line with slope +Z. from
e", we can find e"' as the intersection between this line and the
source-caracteristic Zz; (load-line).

Whe can interpret this as: the reflected wave e" (direction of the
source) acts as a 'source' with internal resistor Z..

But the direction of the current is opposite to these one of the
convention as load-caracteristic, so whe have a slope +Z..

When whe consider a sequence of reflections, whe notice that there
is a convergention to the point A. This is normal, because when
the transition-phenomena are passed, whe have a DC-source (with
internal resistor Zy) and load Z;. The voltage and current will be

The disadvantage of this method is there is no respect to time.
The advantage is that non-linear source and/or load-caracteristics

can be worked out.

example : TTL-circuit with 0-1 transition

uitgang ingang
D

ﬁ—l Zc poort 2

o
-4

[
i
poort 1

o

example : TTL-circuit with 1-0 transition

uitgang ingang
D— D
poort l—_} 1=4 Zc poort 2

o«
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0-1 transition

V/ = = - — - — — = i ZC
/ AN

VLT

S IL

Ingang Vin/Iin bij logisch laag niveau

=

1-0 transition

A(VH, IH)

e',i' "ZC e"",i”"
ZC + %0

B e"l’i”l

e",i" Vout/Iout
uitgang 1 LOW
-Zc

Vin/Iin ingang 2
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The coupling of semi-conductors on long lines is a critical work.
The output stage of TTL/ECL technology is always an emitter-follo-
wer or totem-pole output (possible open-collector).

Totem-pole outputs give a low-impedant 'source' at 1 (Q, and D,
conduct), so Z,,.*0 and parasitic capacitors have low influence
(avoid open-collector!). Also ECL with emitter-follower gives low
output-impedance. We can built high datarate-circuits.

We have to match the line but to restrict losses we avoid the
following circuit.

“/\l‘__ME’{\é\'\

@®
e

b
@ /s ‘ZZC e
/2 izgjg;zg

a
©

0 Al
0

Fig.2-9: Matched line with Z; resistor.
Ro = 5a7 Ohm.

RO
Zc

Re

-VEE=-5, 2V

Fig.2-10: Direct-coupling on line with (wanted) reflections ECL.

Coupling of digital systems prefers ECL-circuits because of have

high input-impedance.

Bij ECL is de zwaai 0,9V (-0,9v = "1" ; -1,8vV = "Q"). We
beschouwen een 1-0 gevolgd door een 0-1 transitie. Verder 1is
tr (stijgtijd) << looptijd. We stellen dat Rs=68 en Zc=75 Ohm

VA

0, 9V=AV AV
VB

AV/2 AvV/2
AV/2 Av/2
VC
AV AV
tl £l tl tl

Fig.2-11: Coupling with ECL, waveforms.
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3. Examples of transmission lines

3.1 Microstrip and stripline

These structures act as transmission 1lines, the caracteristic
impedance is function of the dimensions (width of the strip,
thickness of the dielectricum).

The development of solid-state microwave devices has led to very
considerable use of transmission lines based on plane parallel
conductors. These consist of a substrate which supports thin
copper electrodes on either side, with the substrate thickness of
the order of 1 mm. Some different forms of construction are shown
in fig.3-3.

(u) (b)

(c) (d)

Fig.3-3: Forms of microstrip 1line.(a) Stripline.(b)Microstrip
(c)Slot line.(d)Coplanar waveguide.

3.1.1 Stripline

See fig.3-3(a). This 1s the most difficult to fabricate, since it
involves a sandwich of two planar substrates. It i1s however a true
shielded transmission line using the outer planes as the shield
and the middle strip as the inner. The interior is filled with
dielectric.

7. = 29 1nd 2 ) (3.1)
€z o.67.n.w(o.8+-§—/)
9 |
o= —20 (3.2)
3.336 £/,

!
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(a)

Zov g,

200+

w /b

(b)
Fig.3-4: Characteristics of stripline.(a)Dimensions.(b)Z.

3.1.2 Microstrip

The microstrip line of fig.3-3(b) 1is much easier to fabricate,
although it is more lossy and is also dispersive.

This can be understood from the configuration of the lines of
electric force as indicated in fig.3-5.

(a)

Fig.3-5: The effect of substrate permittivity.(a)Single-dielec-
tric.(b)High-permittivity substrate.
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The former shows the situation in single-dielectric, the latter
the situation with a high-permittivity dielectric substrate.

In calculating the characteristic impedance, it 1is customary to
introduce an effective permittivity, e€.., which will be between the
permittivity of the substrate and the surrounding air. The charac-
teristic impedance and phase velocity of the actual line have the
values which would be found for the conductor geometry immersed in
an infinite dielectric of permittivity e¢...

Fig.3-6: Dimensions of microstrip line.

For 0.1 < t/w < 3 we have

7. - 87 1, 5.98h (3.3)

Je,+1.41 0.8w+t

% = 10° (3.4)

3.336£,/0.475€,+0.67

For t/w << 0.1 we can apply the Wheeler formules-graphs. Depending
on the width of the strip, we have

188, -2
NG
sw/h>2  Z.= ' = (3.5,
W € +1 W 0.082(e,-1)
—+0.441+ (In(—=-+0.94) +1.451) +
2h 2me, 2h erz
€.—1
ew/h<2 ZC:__jﬂlﬂ_[1n(iig)+_j;(_ﬂ 2.1 87" (94514 0:241 1 (3.6
14 32 h 2 8.+l €
€r+l i3 T
2

Because of the complexity of these formules, there are a lot of
graphs available like fig.3-7.
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WIDE STRIP APPROXIMATION (W/H > .1)

7|l CHARACTERISTIC IMPEDANCE V. W/H
FOR PARAMETRIC WALULS O Ba

I

(1] ‘IY /
It

r
4

LT
Ii:; Ih
i

SR

i

11

T

il

s

1
i
~1

£3

i

8158 0001 TR HARATRA LM

I

HH5104820 0843

T
.

T

RIS YD

Gl B e
g -1

B

Fig.3-7: Wheeler—-graph for Z.(w/h).

How creating a strip (w/h) with a wanted Z.?

Determine €, of your substrate and read w/h. In literature there
are formules (Hammerstadt) which gives now

€xe [Z,(€r),w/h]. Calculate €,., which is useful to determine the
actual wavelength on the strip

Read again w/h on the Wheeler-graph.

For the determination of ¢,. whe use the following Hammerstadt
formules
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51 are=%(€r+l)+%(€r—l)( L) (3.7)
1+12-é
W
Y1 e =2 (e+1)+= (e,-1) [ (——2——)+0.04(1-2)2] (3.8)
R 2 A 2
1+12—=
w

Some common substrates may be mentioned:

alumina, a ceramic substrate €,9.5 to 10

epoxy (PCB) €,=5 to 6

polyguide, copper-clad irradiated plastic (polyolefin)e,~2.3.

The other types of strip line illustrated in fig.3-3 have proper-
ties similar to those discussed for microstrip 1line, and are
covered in the literature.

3.1.3 Use of stripline and microstrip

A very important thing we can do with these strips is the creation

of components (inductance, capacitor, 500-line,...) for high
frequencies.
In the first chapter we have seen
= / ' |
l T
IS
Zin 2:*
. .

Fig.3-7: Z,, of transmission line.

Z'+7 . tgkL o Z+j.Z;. tgKL

&y . ,
1+7.Z'. tgkL ¢ Z.+j.Z.tgkL

= B

INDUCTANCE Z=0
suppose L<A/12 so tgkL=KkL
if Z=0, and/or 2<<Z..kL and Z.kL<<Z., then
¥ . B ik

Zi = Zen T = Gz kL = 5.2 ZV;:) EL
(¢4
e

. Z . L Lo Li
- j.2mf.d with @ = S - Z¢ Cve £ (3.9)
£

Now we have 2 parameters: L(length) and Z..
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We also know

so we will chose always Z. high-impedant for inductances,
with respect to the system-impedance 500,

for example Z.=1000 (high to 500) and let it terminate in
a low-impedant load, for example <100 (low to 50Q).

The length L of the line now determines ¢.

RO h __,__1——[—__
= wl . > ZC
. X=w z 7

: _ (b) ;Zé§7
. N T F _. Short circuit
B L ;25//;; .

Fig.3-8: Examples of series and parallel inductances,
created with microstrip transmission lines.

CAPACITOR Z=»
suppose L<A/12 so tgkL=KkL
if Z=w, and/or Z>>Z..kKL and Z.kL>>Z_, then

o %o _ _ZeVe 1

Ze 9. kL F2nE.L Jj.w.C
L.Je__.
Ce = - s (3.10)

Z.. V; I

We will chose always Z. low-impedant for capacitors,

for example ZC=100 and let it terminate in high-impedant
loads, for example >1000. The length of the line now
determines C.

i

Fig.3-9: Example of parallel capacitor.
The creation of a series capacitor is impossible !!!!
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Examples of some filters:

7 z Z
L Z. 2>> ZC‘
Z,
T¢ )
/y
7
Zc1 ZC1 << Zcz
Z

Fig.3-10: Resonant and anti-resonant circuits shunting the princi-

pal line.

The difficulty Jjust mentioned means that the only resonant cir-
cuits that can be produced from line sections are resonant or
anti-resonant circuits shunting the principal line.

The only way of placing one of these types of circuit in series
with the principal line is to use the impedance-inverting property
of a quarter-wave line. A well-known result from transmission line
theory is that the input impedance Z;, of a quarter-wave line of
characteristic impedance 7, with a load Z, is given by Z,.=2.%/Z..

A3 A4

|

Fig.3-11: A parallel resonant circuit placed across a line between
two quarter-wave sections is equivalent to a series resonant cir-
cuit placed along the principal line.
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At point C we get

1
s, —
7 = sC _ s<
1.1 e 1 S29C+1
sC
524C+1
So Yiw = __jii__
: 4
(o4
Zz,load = 7 S0 Yz,load = Y
(o)
Y (at point C) = Y2 X
2 s29C+1 2
Zin, | circuit — Zc.Y = Z+(—S%€_) .Zc
1
Zin, series circuit Z+—/+SEQ/
sC

Now Z;, of the series-circuit has to be equal to Z;, of the paral-
lel-circuit. We obtain

/
@ =C.z2 - c=--L
zée

<C’=% - @ =z2.C (3.11)
Ze

Similarly, a series resonant circuit shunting the principal 1line
between two quarter-wave 1lines (fig.3-12), is equivalent to a

parallel resonant circuit placed along the principal line.
— A4 ——— X4 —

l ey ’ l \ : L .
v . ' . _
&2 35/ J R S S
- I
c : I —it |
T Z=o c' Za

o

Fig.3-12: Series circuit equivalence with parallel circuit.

example: Low-pass filter 5 order, f,=500MHz, Butterworth
implementation, in-output-impedance 500.

After some Butterworth-calculations we get
£ 2
_L ' : - Rs = SoSL

—cC

Re=Scnr  ——C4 ‘3 — &
0 L

— —t———

C1:3/9L,FF/ ﬁz :@MR}C‘S :'NIBFFI‘ £l1 :@MH/CS“_—_ B/SL(PF

Fig.3-13: LPF with Butterworth, discreet components.
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After some microstrip-calculations we get
inductances: chose Z.=100Q, (substrate epoxy. er=5, h=1.55mm)
after some hammerstéddt-calculation and Wheeler-graphs we have
w/h=0.4, strip-length calculation gives 1=42mm (value for ¢)
capacitors: chose Z_.=100Q, we get for €, , a w/h=15 and strip-
length 1=5,6mm; €, a w/h=15 and 1=18mm.

For the 500 input-output-lines we get w/h=1.75.

Ca : C3

Ly

HEASUREMENT REF YALUE | /D1 AVG OFFSET

(VL :h . 4.0 18 FF OFF
) —
7
N TRKER: W]
LINE: (MHz) | 1 {0
LAY 7 500,000
T 10000000
b1 50,000
57000000
&S00
CURSOR: (MHz)
\4
800,000 00
47,06 &n
/
LA 71 /50
e — |
e — '
START 100,000tz STP 800,000 iz

Fig.3-14: LPF in microstrip with Bode-plot.
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3.2 Electromaagnetic Waveguides

For low frequencies (max. 2 GHz) coax or microstrip satisfies as
transmission line. For higher frequencies we use wave-guides (or
radar-tubes). In this chapter we’re only going to examine the
rectangular waveguides.

Fig.3-15: Rectangular waveguide.

The propagating waves are referred to as transverse electric and
magnetic waves: TEM waves for short. We can distinguish between 3
components for the electric and magnetic fields: E,,E,,E,; H,,H,, H,.
Now there are 3 different modes possible, TEM, TE, TM. In the TEM
mode E and H are perpendicular to the propagation-direction z, so
there are only the E,,E, H, ,H, components (so no E and H in the pro-
pagation-direction). In the TE mode only the E-field is perpendi-
cular to the z-direction, so we have E,,E,  H,, H , H,. And for TM we
have H,,H,,E,,E,,E, existing.

It will be shown that TE and TM waves can exist inside hollow
conducting tubes, and so are usually associated with waveguides.

3.2.1 Dimensions of waveguides

Fig.3-17: Wave propagating in guide.
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v_ = c.cosB

2l

v§=:c.sin8 , 8o v,Lc
A,.cos® =4 - A =_A

. c3§9
Ay.sin = 4 - Ay = SHen (3.12)

On which distance do we have to place the second plate with res-
pect to the wavelength A,? There has to be one or an integer number
of half-wavelengths between the two plates, as indicated in fig.3-

18«
Let a be the distance between the plates, then

i
=]

Fig.3-18: Distance a between the 2 plates of a waveguide.

n

a=m. —

2
arfter some Ire-arangements we get

_ A
o kg— -
m 2
l._
(2a)

So not all signals will propagate because the denominator can be
zero (=no propagating wave in the direction of the guide).

g = —" . epna - 28 (g 33
A m
1-(—==)%
?

SO A. is a critical wavelength, the wavequide acts as a high-pass
filter.

- example: f=6 GHz, a=3 cm, dominant mode m=1

There will be propagation if A<A., or f£>f_, with
A.=2a/m=6 cm, and A=c/£f=3.10%/6.10°=5 cm.

So a signal of 6 GHz will propagate through the
wave-guide.

Fig.3-20: Modes m=1 and m=2.
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Suppose m=2, now A=3 cm and A=5 cm, no propag-
ation of a 6 GHz-signal occurs.

Now we’re going to expand formule (3.13) for a distance a and b in
a two-dimensional structure, shown in fig.3-21.

oA
¥ ) | //
|
ra
A
A
/
T 7
/
b Y
—L /
] D — s

Fig.3-21: Rectangular waveguide with length and width a,b.

We get

A= = f. =2 with Ve =
Ve

(II’II)Z

1
c Jp.e'J a b

(3.14)

with propagation-condition >w.. Coefficients m,n indicate the
numbers of half-wavelengths with respect to walls a and b.

Very important is to know the caracteristic impedance of a wave
guide, knowing the free-space impedance = 377fl.

TE-MODUS ~ Z_»377Q (3.15)
TM-MODUS ~ Z_<377Q (3.16)

Z
1) Z,= ——>——
_ (e
1 (lc)
2} Z, = 2, l,—<7}h;)2

3.2.2 Wave-patterns in wave-guides

Helmholtz-equations: consider the rotor-Maxwell-equations in the
frequency-range
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6AE=-jwa
VAH = jmeE- (3.17)
we have 6A(§%£5 = —jop(VAH) = +w2peE (3.18)
This reduces to
VzE_er'“’uegz 0V VE+k2E =
and V2H+k?H = 0
92 9 92

with V? = Laplacian = - + -V.V
gx? dy? gz

2 Modes: TE,q4 — E..i,tE,.i, (standing wave in the section)
TMmode —3 Hx'ix+Hy' iy ( i " )

example: TE-modus

E = (B (x,y) .1 +E (x,5) . $(z)  (3.19)
L L 1
/ A . .
standing-wave pattern propagation-condition eq.

(x-y) section

division of eq(3.19)by Ex(x,y)-9(2) [for ease we
write E,.(x,y)=E,], gives

VPE (x,y) . ¢+k*.E (x,y) . = 0
(SQ' for.x dlrectlon)
?.E, O°E, 22 ¢
z ) .p(z) +E, (x,y) .
ox? . ay? ¢ x5 Y

1l
o

( +k2 E.¢(z

| 82E"+82EX)+ 1L P02 42 .
&, ox? Ody? ¢ (z) dz*?

(I): distribution of the field in the (x,y)-plane
(II): distribution along the z-axis

Solution of (I): condition: E,(x,y) = sin(m’x).cos(n’y) = 0

So,if x=0 - sin0=0
x=a - the conditions for E,=0 are:
m’.a=m.7 - m’=(mw)/a
if y=0 o sino0=0
y=b - the conditions for E,=0 are:
‘.b=n.m - n’=(nmw)/b
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mnx

) .cos( i

= 5 ) nidy + G008 (

).sin(Z2X) 1, (3.20)

If we fill in the solution of the equation in (I), we find

A = m'*n’* = k2 (3:.20) (ALWAYS positive)

C

with k.2 (=27/A) the critical wave-number.

By giving some specific values to m and n we can create different
modes.

Solution of (II):

$i{z) = Al eV Koz | pi oI lEkGz

k*>k.* the / gets positive and there will be propagation,
k*<k.* the V' is negative and there will not be propagation.

= HL e LU
k—\J(a) +(b)

2T

= Z=.f, so £>f, (3.21)
\4

C

3.3.3 The dominant mode

If we assume that a and b are unequal, and in particular a>b,
form. (3.21) shows that the lowest cut-off frequency corresponds to

the case m=1, n=0, when

£l = (3.22)

v
2a
The next lowest frequency will be either f,, or f,, depending on the
relative magnitudes of a and b. There is thus a range of frequen-
cies for which only one mode can propagate. This is called the
dominant mode. It is instructive to express the cutt-off condition
in terms of wavelength. Since v is the velocity of a TEM wave in
the medium, the wavelength of a TEM wave of frequency f,, is given
by A=v/f,,.

Eg.(3.22) then shows that

A =2a
The cut-off frequency corresponds with the wavelength for which
the width of the waveguide is one half-wavelength.

When a source of any sort is used to generate waves in a waveguide
it will in general produce all modes in varying proportions.
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However it is desired that only propagation in the lowest mode 1is
possible. In cases where the frequency is such that propagation is
possible at several modes, special precautions are needed, since
departures from .ideal guides will lead to one mode generating
another, and mode coupling takes place.

For frequencies less than £, the fields are attenuated, with
attenuation coefficient o« nepers per metre given by

- 2m  [FZ _r2
o = WFE-F2 (3.23)

3.3.4 TE modes

TEs

Fig.3-22: Transverse field patterns of TE modes in rectangular
waveguide. Solid lines shows E-field, pecked lines H-fields.

T
Y

T,

Fig.3-23: Transverse field patterns of TM modes 1in rectangular
waveguide.
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- example:

Some standard rectangular guides

[nside <
dimensions TE,

cut-off Range
Type (in) (mm) (GHz) (GHz)
WG 10 2.840x1.340  72.14x34.04 2.080 2.60-3.95
WG 12 1.872x0.872 47.55x22.15 3155 3.95-5.85
WG 14 1.372x0.622  34.85x15.80 4.285 5.85-8.20
WG 16 0.900x0.400 22.86%x10.16 6.56 8.20-12.4
WG 18 0-622x0.311  15.80x7.90 9.49 12.4-18.0
WG 22 0.280x%0.140 7.11x3.56 21.10 26.5-40.0

WG 16 has internal dimensions 22.9 mm X 10.2 mm and is air-filled. Find the
five lowest cut-off frequencies. It is recommended for use in the dominant mode
for frequencies between 8.20 and 12.40 GHz. Find the phase velocity and guide
wavelength at these extreme frequencies in terms of free-space TEM values.

We find

We have
Hence

At 12.40 GHz

At 820 GHz

3.3.5 Resonant cavity

a=0.0229m
b=0.0102m

v=c=3%x10%ms™"

fi0=6.55 GHz
fro=13.1 GHz
for=14.7 GHz
f11=16.0 GHz
fa=19.7 GHz

vio/c=f/(f2=fi)t
Ae=vi0/f =c/(f*=fio)
A/ A=l (fP=Fio)?

vio/c=Ag/A =1.178

.

U]Q/C :/\gf/\ =1.662

We consider a length d of rectangular waveguide of cross-section

axb which is closed at the two ends by conducting plates,

in fig.3-24.
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Fig.3-24: A resonator in rectangular waveguide.

Hence

)4 (3.24)

e
I
a
-
wls
!
+
ol
i
+
b

d

The ’‘box’ resonates at discrete frequencies, and not in a continu-
ous range as a YC-resonator circuit.

With a real cavity, losses occur in the walls and also in the
connection used to couple the cavity to source and load. These
losses produce a range about each resonant frequency over which
the cavity can be excited, as is true for resonant circuits.

3.3.5 Wavegquide systems and circuits

Rectangular

: waveguide
waveguide

il

Junction

Fig.3-25: Junction between two different waveguides.

It is desirable to match waveguides in the same way as it is
desirable to match transmission lines; for example, at high power
the VSWR should be near unity to avoid excessive locl stresses, or
a receiving aerial should be matched to the waveguide feed to
abtain maximum received signal. As with transmission line, we need
to introduce admittances in shunt at points along the waveguide.
Such admittances can conviently be produced by posts and by thin
diaphragms. Some examples are shown on the next page.
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Fig.3-26:

1%

o

(a)Symmetrical

. 0 ]
Ld b : Y, iB Y, —YB— = i—b In cosec (wd/2b)
) 0 4
v 1
2 |
1 o ¢ —
7 F T
(a)
- i B _8
d _ 8b
E Y, B Y, ——Y—O~ = )\—g In cosec (wd/2b)
4’ l _
T T T
)
7
- X _a . 2
% x| —— Z, i Zy 70« = 7\: tan® (wd/2a)
Z — a
a
(c)
/ X _ a tan® (wd/2a)
T |pemmer=e Zy X Z Zy A, 1+ cosec? (nd/2a)
/ ]
‘*d'»l—(——d—)— T T
a
(d)
7 )
/ %
Z
%
(e)
Irises 1in waveguide as admittances.

capacitive. (b)Asymmetrical capacitive.(c)Symmetrical inductive.(d)

Asymmetrical inductive. (e)Resonant.
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Coaxial line

Antenna
probe

Short-circuited
end

Antenna probe

TM;, mode TM,, mode

Fig.3-27: Methods of exciting various modes in rectangular wave-
guides.

A reflectionless termination is made by arranging for the gradual
absorption of the incident wave. A resistive sheet forms a gradual
taper in a plane containing the electric field.

Fig.3-28: Reflectionless load for rectangular waveguide.

It is often necessary to couple small amounts of energy between
two waveguides or parts -of the same guide. Sometimes the coupling
may be into free space. Such coupling may be done by small holes
or slots in correctly chosen parts of the waveguide wall, or by
placing an iris with a small window across the guide.

Fig.3-29: Disposition of slots.
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Connections are useful in many ways: as a means of adding compo-
nents for matching purposes or for power sharing between several
loads.

N—

;g ,

!

/

Pressure gasket

Fig.3-30: Choke coupler.

A magic tee (Fig.3-31) is commonly used for mixing, duplexing, and
impedance measurements. A magic tee may be used to couple the two
transmitters to the antenna in such a way that the transmitters do
not load each other. The two transmitters should be connected to
ports 3 and 4, respectively. Transmitter 1, connected to port 3,
causes a wave to emanate from port 1 and another to emanate from
port 2; these waves are equal in magnitude but opposite.in phase.
Similary, transmitter 2, connected to port 4, gives rise to a wave
at port 1 and another at port 2, both equal in magnitude and in
phase. At port 1 the two opposite waves cancel each other. At port
2 the two in-phase waves add together; so double output power at
port 2 is obtained for the antenna.

47



Port 3
To antenna

Port 2
Collinear E arm Transmitter 1 : f
arms 4 4u

Port 2

Transmitter 2

Port 3

Port 4 *
Harm ' Port 4

Port | Port 1 L T

Fig.3-31: The magic-T.

Another Jjunction is the hybrid-ring. If it is remebered that one
half-wavelength of 1line has the effect of changing the sign of
voltage and current between input and output, it will be seen that
the four ports are symmetrical save for a phase inversion between
1 and 4.

Feeding from port 1 will therefore cause in a load on port 3
currents through the two paths which are equal and opposite, so
that no coupling takes place to port 3. Using the impedance-inver-
ting property of a quarter-wavelength line, we can see that oppo-
site ports are not coupled.

Fig.3-32: The hybrid-ring.
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Some other possiblities :

L g >t—bh —>f<a >

mil i li[ e

t

(@) (b)

Secondary Rotated
waveguide secondary

Primary waveguide
(© (d

Different directional couplers. (a) Two-hole directional coupler. (b)
Four-hole directional coupler. (c) Schwinger coupler. (d) Bethe-hole directional

coupler.
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Port] ———————————————— -
1) —
Port3 Canceled & _ X, __ " Adde
Secondary waveguid:

Two-hole directional coupler.
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3.3 Optical Wavequides (fiber-optics)

An optical fiber transmission link comprises the elements shown in
fig.3-33. The key sections are a transmitter consisting of a light
source and its associated drive circuitery, a cable offering mechanical
and environmental protection to the optical fibers contained inside,
and a receiver consisting of a photodetector plus amplification and
signal-restoring circuitry. A practical optical fiber generally
contains several cylindrical hair-thin glass fibers, each of which is

an independent communication channel.

; ; Récel
Electri — nsmider 1 Optical r—————- ik 1
in;flll"c lr 1 signal ] | Electric
i - signal oul
signal 1, | Drive Light i Signal | |
: 1 circuit | source ™| Photodetector restorer [ |
ical fiber | |
! | Opitssl Amplifier
L J U o i o} o S d

Fig.3-33: Basic elements of an optical fiber transmission link.

A fundamental optical parameter of a material is the refractive index
(or index of refraction). In free space a light wave travels at a speed
c=3.10°m/s. The speed of light is related to the frequency f and the
wavelength A by c=fA. The ratio of the speed of light in a vacuum to
that in matter is the index of refraction n of the material and is

given by

n=2S5 (3.25)
f

Typical values are n=1 for air, 1.33 for water, 1.5 glass, 2.42

diamond.
The relationship at the interface is know as Snell's law and is given

by

nlsimpl = nzsimp2 (3.26)
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Fig.3-34: Refraction and reflection of a light ray at material
boudary.

As the angle of incidence ¢, in an optically denser material (higher
refractive index) becomes smaller, the refracted angle ¢, approaches
zero. Beyond this point no refraction is possible and the light rays
become totally internally reflected.

This point is known as the critical angle of incidence ¢..

¢, = arc cos— (3.27)

n ny

|
mny ] 1oy

Fig.3-35: Representation of the critical angle and total internal
reflection at a glass-air interface.
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/| Bufller couting

Fig.3-36: Schematic of a single-fiber structure. A circular solid core
of refractive index n; is surrounded by a cladding having a refractive

index n,<n;.

Variation in the material composition of the core give rise to the two
commonly used fiber types shown in fig.3-37. In the first case the
refractive index of the core is uniform throughout and undergoes an
abrupt change (or step) at the cladding boundary. This is called a
step-index fiber. In the second case the core refractive index is made
to vary as a function of the radial distance from the center of the
fiber. This type is a graded-index fiber.

Index Profile Fiber Cross Section und Ray Paths Typical Dimensions

ny| :"l l
125 um
: i’ (cladding)
_—— 8-12 pim
e T PR -1 (core)
"! l I”l
| 12500 pm
| (cladding)
— T —_ - )
2a 50-200 pm
_l_ (vore)
Ml M |
| 125 um
! __r=a - (cladding)
fr=0 50 pm
- (core)
Multimode graded-index fliber

Fig.3-37: Comparison of single-mode and multimode step-index and
graded-index optical fibers.
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The step-index fibers can be further divided into singlemode and
multimode classes. As the name implies, a single-mode fiber sustains
only one mode of propagation, whereas multimode fibers contain many
hundreds of modes. The advantages of multimode are

® casier to launch optical power into the fiber

® so easier to connect similar fibers

® use of LED, whereas single-mode requires laser diodes.
The disadvantage compared to single-mode fibers is the intermodal
dispersion. When an optical pulse is launched into the fiber, the
optical power in the pulse is distributed over all of the modes, (so
each over a slightly different velocity) thus causing the pulse to
spread out in time at the output.

From Snell's law the minimum angle ¢@,, that supports total internal

reflection for the meridional ray is

\ _ nZ
Sln((pmin) - ?1_
X
. _ ; _ 2 2
n.31neoﬂmx = n151n6c = {m =, )
1
NA = n.sin6_ = (n/-n;) ?~n,/2a (3.28)

Equation (3.28) defines the numerical aperture NA of a step-index fiber

for meridional rays.

Refracted /

i rny « N3 Cladding

et

Retlected ray
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Fig.3-38: Meridional ray optics representation of the propagation
mechanism in an ideal step-index fiber.

When the NA-value is high, the fiber collects more radiation from the
light-source.
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